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Introduction

This project was a joint effort of the David Sarnoff Research Center (Sarnoff), Princeton
University, and Robicon Systems, all of Princeton, NJ. It was a multi-disciplinary project that
consisted of three sub-projects, each concerned with a similar kind of research -- the development
of artificial adaptive systems with capabilities similar to those of their biological counterparts. Re-
cent work on neural networks has demonstrated their potential for solving difficult problems in
simplified, controlled environments. The next stage in the development of neural networks is their
extension to the scale, complexity, and variability of real-world situations. This will not be a sim-
ple evolution of existing neural net designs, because it requires the integration of complex adap-
tive systems whose components have widely differing functions. Fortunately, biological
organisms present existing solutions to this problem and neuroscience can now probe in detail the
relevant structures. Biological systems are highly adaptive and operate well in extremely complex
and variable environments. They accomplish this by partitioning the system into functional sub-
units in a quasi-hierarchical structure of neural network modules. In this project we have studied a
number of specific examples of this system integration strategy and have modeled their operation
for the purpose of creating new neural network architectures and control schemes.

The three sub-projects, which are fully described in Sections I, II, and III of this report, are
introduced below:

I. Self-Supervised Learning Within a System of Map-Like Neural Networks

Many of the nuclei of the central nervous system exhibit map-like architectures, in which
neuronal response characteristics exhibit a systematic spatial variation over the nucleus. These
systems are examples of how to break large, complex problems down into smaller, simpler sub-
problems, and an understanding of them may provide insight into the construction of similarly
powerful solutions in the technological domain. The target localization system in the barn owl is a
particularly good example. The results include biophysically realistic models and computer simu-
lations of the auditory localization system of the barn owl. We have produced many experimental
predictions and greatly increased our understanding of how this system computes.

II. Modeling Adaptive Processing in the Visual Cortex

This project investigated the adaptive processing of motion signals by the visual cortex. In
general, this system can be described as a chain of adaptive sub-modules, each of which adjusts
the gain of selective components of its input signal. The result is a signal for which change in var-
ious relevant stimulus dimensions is emphasized. The results include a model of differential mo-
tion sensitivity in the cortex. Such results are useful not only for gaining insight into neural
function, but also for improving the sensitivity of artificial vision systems to specified signal di-
mensions.

III. Hierarchical Architectures and Integration of Neural Networks and Knowledge-Based
Systems for Intelligent Robotic Control

The objective of this research was to study the feasibility of using robotic skill acquisition
for the intelligent control of highly redundant, anthropomorphic robotic manipulators. The control
scheme uses models of human motor skill acquisition to guide the integration of knowledge-based
systems and neural networks, and parallels the training of an athlete by a coach whereby the robot
learns through experience how to perfect tasks initially specified in a high level task language.
Knowledge-based system components are used to encode neural network learning strategies, and
skill acquisition is associated with the shift from a predominantly feedback-oriented, knowledge-
based representation of control to a predominantly feedforward, network-based form. Intelligent
robotic control systems have been constructed with a hierarchical and modular organization, us-
ing antagonistic actuation mechanisms and multi-joint motor synergies.



Section I

Self-Supervised Learning Within a System of Map-Like Neural Networks

A. BACKGROUND

Most of the visual, auditory, and somatosensory nuclei of the central nervous system exhibit
map-like architectures, in which neuronal response characteristics exhibit a systematic spatial
variation over the nucleus. These map-like nuclei appear to serve as modules within hierarchical
and parallel computing systems. These systems are examples of how to break large, complex
problems down into smaller, simpler sub-problems, and an understanding of them may provide
insight into the construction of similarly powerful solutions in the technological domain. In addi-
tion, they exhibit other useful properties for man-made computing systems, such as self-organiza-
tion, self-optimization, and fault-tolerance. The neural substrate for target localization in the barn
owl is one such system.

The barn owl can hunt in total darkness, recognizing and locating prey by hearing alone.
One component of this behavior is a very accurate head-orienting response to salient sounds (the
head must rotate as the eyes are immobile). This head saccade centers the sound-producing object
for closer visual and acoustic scrutiny, prior to aerial attack. In the laboratory, owls can be trained
to produce naturalistic head saccades to controlled sounds, and thus indicate the perceived sound
location. In this way, the barn owl has been shown to be more accurate at localizing sounds than
any other terrestrial animal studied thus far [ 12].

Considerable progress has been made in determining the acoustic and neural bases of the
head saccade (see Fig. 1). The following description is greatly simplified, as its purpose is limited
to providing the context for the work reported here (see [ 15, 7] for recent reviews). The acoustical
properties of the owl's head and ears lead to the encoding of stimulus azimuth and elevation by in-
teraural time delay (ITD) and interaural level difference (ILD), respectively [181. In effect, associ-
ated with each direction in space there is a unique relationship between frequency (F), ITD, and
ILD; to determine the direction of a sound source, the system must, in effect, compute the nonlin-
ear mapping between the ITD and ILD spectrum of the sound and its direction.

The binaural ITD and ILD information is extracted in two steps. First the monaural timing
and intensity information are separated by the cochlear nuclei [26]. Second, maps representing the
ITD [27] and ILD [16] spectra are produced in, respectively, nucleus laminaris (NL) and the nu-
cleus ventralis lemnisci lateralis pars posterior (VLVp).

Our previous modeling suggested that the merger of 1TD and ILD should occur in two stag-
es, in order to avoid the problem of phantom targets in multi-sound environments [221. In the first
stage, presumably the lateral shell of the central nucleus of the inferior colliculus (ICL), cells are
tuned to unique combinations of ITD, ILD, and frequency, and arranged in a three-dimensional
map. In the second stage, each of the ICL neurons projects to and excites the region of the space
map in the ICX that corresponds to the direction associated with the ITDIlLD/F triplet to which it
is tuned. Experimental work is in basic agreement with this model [4], but many details remain to
be worked out. In any case, the equivalent of an "acoustic retina" is found in the external nucleus
of the inferior colliculus (ICX) [ 13, 14].

In the optic tectum, projections from the ICX [10] and the retina produce a fused
visual-acoustic representation of target direction [ 11 ], and both sensory maps are in register with a
motor map of head saccade vector [3]. The visual/auditory alignment must be dynamically adjust-
ed while the head is growing, because the changing shape of the head alters the relationship be-
tween ITD, ILD, frequency, and sound direction. The tectal auditory map shifts so as to stay in
alignment with the tectal visual map [6, 8, 9]. This could easily be explained by correlation-driven
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Figure I-1. Overview of the neural system for auditory localization in the barn owl. The grids indicate the map-like
representation of information at each processing stage or nucleus. The "blobs" indicate the pattern of neuronal activa-
tion on the map in response to a typical stimulus. Acronyms NL, VLVp, ICL, ICX, ITD, and ILD are defined in the
text. Arrows indicate the direction of signal flow. Symbols "az" and "el" denote azimuth and elevation, respectively,
while F denotes frequency.

synaptic plasticity acting within a one-to-many ICX-to-tectum projection, and we in fact proposed
such a model [19, 5]. However, shortly after this contract began, the Knudsen lab demonstrated
that the plasticity is upstream of the tectum, in the inferior colliculus [ 1, 17]. This implies that the
visual feedback must be indirect, as there are no known visual sensory inputs to the inferior colli-
culus.

B. OBJECTIVES

The purpose of this project was to further the understanding of this system through the de-
velopment of biophysical and computational models and computer simulations. The goal was to
produce explicit, testable predictions for neuroscience. In addition, it was expected that this re-
search would lead to new artificial neural network designs, with applicatiuns for signal process-
ing, sensory fusion, and sensorimotor integration.

C. RESULTS

1. Modeling the Intensity System

Instead of modeling the ICL-to-ICX projection and visual/auditory plasticity, as originally
proposed, we chose to model the intensity processing system in the VLVp and ICL. This change

3



was made for several reasons in response to experimental reports made after the proposal was
written. Fujita [41 reported that the ICL contained both ILD-tuned and ILD-sensitive neurons, and
that there was some convergence across frequency in the ICL. Our previous model of the ICL in-
corporated only ILD-tuned cells and had no frequency convergence. Also, as mentioned above,
the Knudsen lab showed that the visual/auditory plasticity was occurring upstream of the tectum
[1,17]. Therefore it was decided to first construct a model of the ICL that could account for these
findings before using it to model the formation of the space map in the ICX and visual/auditory
fusion. This of course requires models of the inputs to the ICL. The nature of the representation of
lTD prior to the ICL was quite well understood, however the representation of intensity and ILD
prior to the ICL was not. However, the publication of Carr's anatomical study of the VLVp [2],
along with Manley's physiological paper [ 15], gave us enough information to attempt a model and
simulation of the VLVp. Therefore, we decided to develop joint models of the intensity process-
ing of the VLVp and the ICL. The anatomical and physiological data to be incorporated and ex-
plained by our models of the VLVp and ICL are summarized in Fig. 1-2, below.

LEFT RIGHT

e xt ILD TUNED & ABI -110.

INDEPENDENT

iCL ,ID TUNED -1101

of lateral shell ABI?-

of the central nucleus
Of the inferior colliculus T ILD SENSITIVE --

VLVp 
osl-1

Nucleus ventralis
lemnnisci lateralis ILD & ABI

pars posterior SESTIVE

central -

ventral -

ILD

Intensity

Figure 1-2. The intensity processing system for sound elevation of the owl. On the left. the names and acronyms of
the nuclei are given. On the right, the salient response characteristics are named and illustrated with graphs of
stimulus response. The dashed curves represent the response with an increased average binaral intensity level
(ABI). The "?" indicates that the ABI dependence is not completely known. The connections between nuclei are
indicated by lines with arrows and the inhibitory and excitatory nature is indicated by -- and -+", respectively.
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The quantitative, mathematical network models developed were motivated by a qualitative
model of the generation of ILD-selectivity, called the "spatial-derivative model". This model, il-
lustrated in Fig. 1-3 (below), was developed independently by a number of investigators, includ-
ing S. Volman, T. Takahashi, R. Adolphs, and the personnel of this contract. The spatial-
derivative model holds that a tone of a given frequency produces a wedge-like pattern of activa-
tion in the VLVp, and that for a fixed ABI, the position of the edge varies roughly linearly with
ILD. Such a pattern of activation is suggested by the observed dorso-ventral variation of ILD-
threshold depicted in the graphs of Fig. 1-2. The model predicts that a peak-like pattern of activa-
tion is created along the medio-lateral axis of the ICL, from the wedge-like pattern in the VLVp.
The location of the peak of activation would vary roughly linearly with ILD, which is clearly con-
sistent with ILD-tuned responses.

d
10[,IdB -5TdB dx dB -CI

dorsal VLVp ventral medial ICL lateral

Figure 1-3. The spatial-derivative model of ILD-selectivity in the ICL. The
curves illustrate the hypothetical activation patterns within the VLVp and ICL
for stimuli with ILD's of 10dB (solid) and -5dB (grey).

The first version of the network model of VLVp/ICL was presented in December, 1989 at
NIPS [23], and at the Annual Meeting of the Society for Neuroscience. The anatomy of this model
is summarized in Fig. 1-4, below.

sensitive tuned
cell type cell type

Figure 1-4. First version of the VLVp/
ICL model. The size of the circles or tri-

,, ,,angles denote the number density of the
Ainhibitory or excitatory cells, respec-

,, ,"tively. The afferents from NA linearly
," ,,'encode the stimulus intensity, and pro-

•5 50 NA ) 5 50 vide the same level of excitatory drive
0to each VLVp neuron. The criss-crossentIntensity lines indicate the reciprocal commis-

LEFT RIGHT sural inhibitory connections betweenthe VLVp.
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All VLVp neurons receive the same level of excitatory drive from NA. There is a criss-cross
pattern of commissural inhibitory connections, which are reciprocal. Cells at one dorsal-ventral
position inhibit the cells at the corresponding position of the contralateral VLVp, and vice versa.
The reciprocity is not symmetric, as the ventral-->dorsal connection is stronger than the dorsal-
ventral connection because of the gradient of inhibitory cell density. The reciprocally connected
cells thus compete-whichever cells initially receive more excitation than inhibition will drive the
output of their contralateral competitor towards zero while their own output rises towards the
maximal level. Simulations showed that a wedge-like pattern of activation is produced (see Fig. I-
5), in which the dorsal-ventral position of the "edge" of activation is linearly related to the stimu-
lus ILD (see Fig. 1-10), consistent with the spatial derivative model. This model was called the

ILD = -20 dB ILD = 0 dB ILD = 20 dB
dorsal

L 6 1 h , ventral

-pm1 RATE"4-
LEFT RIGHT

Figure 1.5. Wedge-like dorsal/ventral activation patterns in the VLVp.

"competitive edge model" of the VLVp. The model also mimicked the VLVp stimulus response
data of Manley, Koppl and Konishi [161, and the ICL stimulus response data of Fujita [4].

Early in 1990 a refinement of the VLVp model was made. A second population of local in-
hibitory neurons was added, which received the same inputs as the commissurally projecting neu-
rons, but had the opposite density gradient, being more numerous at the dorsal surface, and less
numerous at the ventral surface. These neurons acted to buffer the competitive dynamics, reduc-
ing the time it took the edge to form and reach its final position. This refined model was presented
at the first meeting of the AMNS Workshop (July, 1990) [24], which included an in-depth review
of the computational methods.

The ICL model was also modified during 1990, in light of recent unpublished data gleaned
from discussions with experimentalists following our 1989 Society of Neuroscience presentation.
The main factor was that the output from the VLVp to the ICL was inhibitory, and not excitatory
as we had assumed in the first version of the model. This change could be made while staying
within the framework of the spatial derivative model (described above). The architecture of this
second model is illustrated in Fig. 1-6, below. In revising the ICL model, we were greatly aided by
discussions with Ralph Adolphs of CalTech, a graduate student in the Konish Lab. Ralph was then
performing studies of the effects of injecting various neural activity modulators in the VLVp. The
second version of the VLVp/ICL, model was first presented at the 1990 Annual Meeting of the So-
ciety for Neuroscience, and it included simulations which mimicked Ralph's neuromodulator ex-
periments. This work was also presented at the 2nd AMNS workshop in the summer of 1991 [28].

One of the benefits of our modeling approach was that we could easily explore the temporal
or dynamic consequences of model parameters. All model parameters had real physical units, and
we could unambiguously relate the difference equation temporal change unit to a specific unit of
physiological time. For example, we could measure how long it took for the dynamic competition
in the VLVp to reach an equilibrium, in terms of milliseconds. This is what led us to introduce the
local inhibitory cells in the VLVp (described above). Fig. 1-7 shows the pattern of activation in the
model for the first ten milliseconds following stimulus onset. Such a sequence could be displayed
in very rapid sequence on the SUN workstations we used-100 milliseconds of network time could
be simulated and concurrently viewed in a few seconds. This enabled ideas to bz tried out and pa-
rameters tuned very quickly.

6
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Figure 1-6. Second version of the VLVpIICL model. The stippling within the cells
indicates the degree of stimulus-driven activation (the darker the more active).

Within the last year Ralph published detailed anatomical tracing studies [30] that suggest
that the inter-VLVp inhibition is feedforward, rather than feedback, as it was assumed to be in our
first (competitive-edge) model [28]. This finding contradicts earlier work by Takahashi [33),

0

Q , ___

CL

> >
44

Figure 1-7. VLVp/ICL activation pattern sequence. Each of the nine panels depicts the pattern of activation
along the left and right VLVp, and the sensitive and tuned cells in the ICL, as indicated in the upper-left-hand
panel. The numeric label (0, 1, 2, 10) is the number of milliseconds following onset. The patterns had stabilized
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Figure 1-8. Comparison of competitive-edge (top) and feedforward (bottom) models of the VLVp. The firing rate as a
function of RLD and ABI is plotted. The 5 plots shown are taken from neurons spanning the dorsal-ventral dimension
of the nucleus (depths of 25%, 37.5%, 50%, 62.5% and 75%), as can be surmised from the progressively shifting
RLD thresholds.

whose HRP tracings were consistent with the competitive-edge model. In any case, we decided to
explore whether a feedforward model could match the data of Manley et al. [161 as well as the
competitive-edge model did. Our approach to this question was to train a static feedforward neu-
ral network to match the steady-state output of the competitive-edge model, using the techniques
developed in the field of artificial neural networks. Work just completed demonstrates that the
feedforward model can be trained so that the response curves are very similar to those of the com-
petitive-edge model, as shown in Fig. 1-8. The competitive-edge model is a closer match to the
known anatomy in several other ways, and in our opinion, is still the best candidate. More ana-
tomical experiments will have to be done to distinguish between these models. This is somewhat
surprising, since the dynamics of the two models are so intrinsically different. This work was pre-
sented at the Society for Neuroscience Annual Meeting this year [32] and a manuscript is in prep-
aration for submission to the Journal of Neuroscience.

Adolph's [30] also presented evidence that the VLVp--> ICL projection is bilateral, with the
ipsilateral projection weaker than the contralateral projection. Previous work by Takahashi (un-
published, personal communication, Summer 1988) had revealed a contralateral-only projection,
and this finding was an assumption of our previous ICL model. Conceptually, the presence of a bi-
lateral projection does not invalidate our previous model, and in fact, bilateral projections could
be incorporated in such a way that the resulting ICL responses and the underlying computational
model ("spatial derivative model") would be the same. However, a bilateral projection does pro-
vide more degrees of freedom, and we were interested if perhaps an entirely different computa-
tional scheme could be implemented using it.

We were especially interested in deriving a new model of the VLVp --> ICL projection for
which the dependence on the average binaural intensity (ABI) would be less in the ICL than in the
VLVp. Our previous ICL model [28] was just as dependent on ABI as the VLVp. This is because
the underlying spatial derivative model is based on point-to-point, topographic projections, and so
the ICL must inherit the same degree of ABI dependence as the VLVp. The degree to which neu-
rons in the ICL. ICX, and optic tectum are independent of ABI has not been extensively studied. It
has generally been maintained that ICX and tectal cells are relatively independent of ABI 171. This
is what one would expect, since these neurons are thought to encode sound source direction.
which is independent of ABI. However, there is also evidence from Olsen et al. [31] that tectal
cells show the same kind of dependence on ABI that VLVp cells do (161.
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Figure 1-9. Comparison of the "spatial-derivative" (top) and the "ABI-independent trained" (bottom) models of the
ICL. The firing rate as a function of ILD and ABI is plotted for the tuned cells. The 5 plots shown are taken from neu-
rons spanning the medio-lateral dimension of the nucleus (relative distances from one border of 25 %, 37.5 %, 50 %,
62.5% and 75%), as can be surmised from the progressively shifting RLD peaks. Note the striking difference in the
ABI dependence.

Our approach was to use the training methods of artificial neural networks to derive the con-
nections between the VLVp and the ICL, as well as those within the ICL. We found that nearly
ABI independent cells can be produced in the ICL, as illustrated in Fig. 1-9. However, the ipsilat-
eral projection from the VLVp was not essential for this. Models with the full bilateral projection
were slightly more ABI independent than those with a contralateral-only projection, but the differ-
ence was not large.

As expected, analysis of the resulting trained network revealed that it is based on a different
computational scheme than the spatial-derivative model. Rather than being point-to-point, the
projection onto an ICL neuron comes from a wide region of the VLVp, as illustrated in Fig. I-10.
At large ILD the cell fires at its highest rate. The excitatory input from NA is at a maximum and
the inhibition from VLVp is at a minimum, since the active VLVp cells are to the right of the con-
nection peak. As ILD decreases so does the cells firing rate. The VLVp inhibition increases as the
wedge of activation extends into the range of the connection peak, and the excitation from NA de-
creases. ABI independence is achieved through a balancing act between excitation and inhibition.
For a given ILD, as ABI increases, the activation pattern in the VLVp shifts such that the inhibi-
tion to ICL increases. At the same time, the excitation from NA increases and nullifies the in-
creased inhibition. This "ABI-independent trained" model shows one way in which ABI
independence can be achieved. Experimental work is needed to measure the actual degree of ABI
independence, and confirm the nature of the predicted connection patterns. This work was pre-
sented at the CNS Conference this summer, at the Society for Neuroscience Annual Meeting this
year [32], and a manuscript is in preparation for submission to the Journal of Neuroscience.

2. Modeling Time Delay Hyperacuity in Nucleus Laminaris

The auditory system of the barn owl contains neurons sensitive to the phase of sounds of re-
markably high frequency, up to 9 kHz. Nucleus Laminaris (NL) represents phase differences as
part of the computation of stimulus azimuth [27]. The input to NL is from both of the monaural
magnocellular nuclei (NM). NM neurons encode stimulus phase or time by firing action poten-
tials preferentially near a particular phase of the stimulus [26]. However, there is significant jitter
in the phase at which the action potentials occur, which is noise in the input to NL. Furthermore,
NM neurons cannot fire during every period of the sound at such high frequencies, so the number
of spikes arriving at a laminaris neuron from each side of the head varies considerably from one
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Figure 1-10. Analysis of a sensitive cell in the "ABI-independent trained" model of the ICL. The upper-left
panel is the ABI vs. RLD (or BID) response of the cell (compare with Fig. 1-8 to see the reduction in ABI-de-
pendence, this reduction was much more dramatic in other sensitive cells). The upper-fight panel shows, for
a given RLD. the nonlinear shift of the VLVp activation pattern as a function of ABI. The lower-left panel
shows, for a given ABI, the Jlin= shift of the same pattern as a function of RLD. The lower-right panel is the
connection strength pattern from the VLVp onto the sensitive cell in the ICL. The solid and dashed lines are
the contralateral and ipsilateral connections, respectively.

sound period to the next, giving an additional source of noise. The high frequency of the stimulus
and the high level of noise in the input spike trains make the response properties of laminaris neu-
rons hard to explain, and casts doubt on the common picture of NL neurons as coincidence detec-
tors. We used simulations and semi-numerical analysis to show that the cellular and synaptic
"time constants must be very fast, probably unreasonably so, in order for ordinary biophysical
mechanisms to reproduce the observed behavior.

Several people have suggested that a resonance mechanism may exist in la.Tinaris neurons
to amplify the signal. We investigated a simple neuronal resonance model that improved the per-
formance considerably, but the synaptic and cellular time constants still had tI be very fast, and
we did not propose a specific biophysical resonance mechanism. This work was published in the
proceedings of the second AMNS Workshop [291.
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There is one peculiar feature of NL that may explain its ability to deal with high frequencies.
In the presence of a sound, there is an extra-cellular potential in NL that oscillates in phase with
the sound. This is called the neurophonic potential. Its exact amplitude has not been measured,
but it may be in the range of 1 to 10mv [Ted Sullivan, personal communication]. The most likely
sources of the neurophonic are the NM axons, which are carrying phase-locked spikes whose ex-
ternal fields would add coherently. This signal has relatively little noise simply because it is an
average over thousands of the noisy signals from individual NM axons. We have calculated how
a passive model of an NL neuron with the experimentally observed cell morphology would re-
spond to such an oscillating external potential. In essence, the cell acts like an electrode. The
membrane at the cell body conducts very well at frequencies above 5 kHz, and the myelinated ax-
on's membrane does not. The oscillating potential near the soma propagates through the soma's
membrane and down the axon. As a result, the oscillating part of the potential difference across
the membrane is quite small at the soma, but grows in magnitude to a maximum of significant
size at some distance down the axon. Voltage-dependent channels respond to the potential differ-
ence, so if they can respond at these frequencies they can respond to the oscillating potential dif-
ference. This would be a much cleaner signal than the synaptic input from NM.

This model has two appealing features: (1) The computation of potential difference has
very few assumptions. The only unknowns are the magnitude of the external potential and the
ability of the neuron to fire in response to the high-frequency potential difference. The first of
these unknowns needs to be addressed experimentally, the second can be investigated through
simulations. (2) The model provides an explanation for the unusual appearance of NL neurons in
electron micrographs, especially the lack of a spike-initiating zone at the beginning of the axon.
These observations were made by Catherine Carr, who suggested that spikes may be initiated at
the first node in the axon, but there was no known reason for the neurons to have this structure.

3. Other Related Work

In addition to his role as consultant to the research effort at Sarnoff, Dr. Sullivan pursued a
number of neurocomputational research topics related to the theme of this contract. The following
is his report.

Past work by myself an others had shown that the processing of information about stimulus
timing and intensity are physically separated, and that neurons in the brainstem regions responsi-
ble for these two functions are anatomically distinct. However, while we know a lot about the
anatomy and physiology of neurons in both the time and intensity pathways, we have a poor un-
derstanding of the relationship between a neuron's anatomical structure and its physiological
function. In my work on the auditory brainstem, I have found that questions of structure-function
interrelationships are best approached in systems for which the physiological function of a partic-
ular neuron is fairly well understood. That is, it is easier to ask why a cell with a specific process-
ing function has a particular anatomical structure than it is to ask what the function of a given cell
with a known structure might be. I have used this approach to investigate the possible role of den-
dritic processes in neurons that compute horizontal sound localization by measurement of interau-
ral time differences and to examine what advantages dendrites might provide to neurons
specialized for processing information about stimulus intensity. In these studies and others de-
signed to investigate physiological mechanisms of both time and intensity processing, I have
come to realize more clearly that the physiological mechanisms available to optimize selectivity
in the time domain are drastically different and often diametrically opposed to those that work
best for intensity. My work is beginning to provide clear physiological explanations for the func-
tional segregation that is observed in the auditory system and suggests that an understanding of
cellular mechanisms can also help to explain higher levels of neuronal organization as well. The
time and intensity segregation seen in the auditory system can also provide insights into the simi-
lar organization of other sensory systems since for any sense for which the stimulus is a form of
energy (e.g., sound, light, touch), both the spatial pattern of energy distribution (i.e., intensity)
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across the sensory receptors and the temporal pattern changes in this distribution must be neurally

encoded

a. Dendritic function in nucleus laminaris

I have refined and extended a model for dendritic function in binaural time comparison.
Earlier theoretical and empirical work has established that this computation involves a cellular
process called coincidence detection in which a cell's spike output depends on its receiving at
least two separate, temporally synchronized synaptic inputs. Neurons that perform this task at
low frequencies have a pair of long' dendrites, each dendrite being innervated by synaptic inputs
derived from the ear opposite to those impinging on the other dendrite. The modeling results sug-
gest that these bipolar dendrites enhance the cell's selectivity for simultaneous inputs impinging
on both dendrites as compared to coincidences of two inputs arriving on the same side. This func-
tion requires electrical isolation between the synaptic inputs from the two ears and therefore can-
not be done without dendrites. However, the mechanism exploits a fundamental property of
neuronal synaptic transmission (voltage saturation) and is therefore a general candidate for den-
dritic functions involving sensitivity or selectivity for specific spatial or temporal combinations of
synaptic input. Further analysis of the model's predictions using more realistic periodic synaptic
inputs shows that aspects of dendritic morphology such as length, branching patterns, and number
can be understood in the context of the basic mechanism I am proposing.

b. Comparison of binaral phase processing at high and low frequencies

Anatomical and physiological evidence indicates that the possible mechanisms of binaural
time comparison that I have described do not (and in fact cannot) operate in neurons that perform
this task at high frequencies (>5000 cycles/sec) in the barn owl. These cells have no dendrites and
also have a different axon morphology. A large portion of the work was devoted to understanding
the physiological process that can enable timing information to be extracted from signals whose
time course is much faster than what is normally considered for neuronal processes. My investi-
gations show that both the temporal properties of synaptic input (transmitter release, post-synaptic
change in electrical properties) and the mechanisms of spike output need to be examined and that
with modest changes in both of these areas, the function of these cells can be explained. Most re-
cently, I have been studying the relationship between the stochastic behavior of the action poten-
tials in the input neurons and the patterns of synaptic conductance change seen by the coincidence
detector cells. These ongoing studies are providing some interesting and insightful results that
should help to confirm the functional/physiological dichotomy between temporal and level (inten-
sity) processing mechanisms discussed above.

c. Cellular mechanisms of intensity processing in nucleus angularis

I have applied a similar logic to the one used to investigate time comparison mechanisms to
an analysis of dendritic function in the processing of stimulus intensity. In this case, I have con-
cluded that some of the intensity averaging functions that had been thought to be done by den-
drites are not likely to be what dendrites are for since these functions can be done more efficiently
in an adendritic cell. Rather, I am proposing a novel dendritic function for these cells: enhance-
ment of the dynamic range of synaptic strength between threshold and saturation. This and other
work that I have done suggests that the comparison of optimal morphological parameters obtained
with different assumption about function is likely to provide a powerful approach to both the the-
oretical and empirical investigation of interactions between anatomy and physiology. I have be-
gun a collaboration with Dr. Cathrine Carr at the University of Maryland designed to test some of
the predictions of this work.
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Section 1[

Modeling Adaptive Processing in the Visual Cortex

A. BACKGROUND

Hubel and Wiesel (1959, 1962, 1968), in exploring the visual cortex of the cat and monkey,
found cells that responded selectively to motion of a bar or edge in a particular direction. Psycho-
physical evidence for similar direction-selective mechanisms in humans comes from Levinson
and Sekuler (1975) and Watson, Thompson, Murphy, and Nachmias (1980). In these studies, con-
trast thresholds were measured for the detectability of a drifting sine grating, as a function of the
contrast of a simultaneously present grating component (the mask) drifting in the opposite direc-
tion. The data showed that contrast thresholds were largely unaffected by sub-threshold mask
contrasts, suggesting the existence in human vision of direction-selective mechanisms whose re-
sponses are independent of other concurrently responding mechanisms, at least at low stimulus
contrast levels.

However, when stimulus contrasts rise above detection threshold, this independence among
mechanisms appears to break down. Stromeyer, Kronauer, Madsen and Klein (1984) measured
thresholds for changes in contrast of one or both components of a counterphase grating; i.e., the
sum of two gratings of equal high contrast, and equal spatial and temporal frequencies, drifting in
opposite directions at the same velocity. Their data showed much lower thresholds for changes
involving the simultaneous increment and decrement of the two grating components, over chang-
es involving increments of both components. This reduced effectiveness of the simultaneous in-
crement is not predicted by a model in which the mechanisms sensitive to the two stimulus
components are responding independently of each other. Instead, it suggests an inhibitory inter-
action in which each stimulus component is reducing the detectability of the other. This inhibito-
ry interaction can be thought of as a gain-setting operation among the cortical mechanisms
responding to a particular visual signal.

B. OBJECTIVES

The purpose of the work performed under this contract was to analyze quantitatively the
form and possible utility of this cortical gain-setting operation. Using the signal domain of spa-
tiotemporal variations in luminance, we undertook three tasks:
Task 1: Perform parametric psychophysical measurements of contrast discrimination among sim-

ple motion stimuli.
Task 2: Develop a cortical gain-control model that predicts the results of Task 1.
Task 3: Investigate signal-enhancing properties of the model developed in Task 2.

One result of Task 3, to be discussed below, is that the gain-control model exhibits a noise-
cleaning function for quantum noise in spatio-temporal signals.

C. RESULTS

1. Task 1: Psychophysical measurements

In all experiments, contrast discrimination thresholds were measured among stimuli com-
posed of the sum of a leftward and rightward drifting sine grating of equal spatia frequency and
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equal but opposite drift rate. In all cases, the only adjustable stimulus parameters were the con-
trasts of the two grating components. Thus, all stimuli can be represented as points in a two-di-
mensional space of these two contrast settings, and the psychophysical task can be described in
this same space (call it m2space) as follows: For a given point m2space (the mask point) and a
given direction of excursion from that point (the test vector direction), find the magnitude of ex-
cursion for which observers reliably detect a difference between the stimulus at the mask point
and the stimulus along the test vector. For measurements along a range of different test vector di-
rections from the same mask point, the data can be represented as closed discrimination contours
around the mask point, analogous to the Macadam ellipses of color discrimination measurements.

Fig.H- I (below) shows some typical discrimination contour results. The solid line contours
show the predictions of the model developed in Task 2, described below. The main point to ob-
serve here about these data is that the sets of threshold points (open circles with error bars) from
each mask point (+ signs) tend to group themselves along rays from the origin of m2space. This
grouping suggests a gain control process in which the outputs of mechanisms sensitive to opposite
directions of motion inhibit each other with a division-like operation. Assuming that each mecha-
nism responds linearly to the contrast of its input pattern, the grouping occurs because all points
along a single ray have the same ratio of responses of the two mechanisms.

.2

Obs: ARI; fit. to all

.15

0o .
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Figure II-1. Discrimination contours for observer ART.
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1. Task 2: Cortical gain control model

Fig. 11-2 shows flow diagram for the cortical gain control model. The model consists of four
main stages:

1. A direction-selective mechanism stage, at which the responses of simple mechanisms sen-
sitive to leftward and rightward drifting gratings are calculated.

2. A mechanism coml'nation stage, at which the outputs of the direction-selective mecha-
nisms are combined to produce two opponent and one non-opponent mechanism outputs.

3. A transduction stage, at which each of the three outputs from the previous stage is passed
through its own sigmoid non-linearity.

4. A decision stage, at which changes in the three outputs of the transduction stage from the
mask to the test+mask stimulus presentations are used to choose which of the two stimuli
contained the test.
At the core of the model is the opponent division operation indicated by the circular opera-

tors in the flow diagram. This opponent division turns out to have some interesting noise cleaning
properties, as will be discussed in the next section.
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2. Task 3: Signal enhancing properties

Fig. II-3 shows how the model developed to account for the psychophysical results de-
scribed above can clean noise from spatio-temporal signals. Panel A of the figure shows two
frames from a five-frame input sequence. These five frames were constructed from a field of fil-
tered noise by displacing a central square by one pixel to the right on each frame, while the back-
ground move to the left by one pixel. Panel B shows the response of the model through the
direction-selective mechanism stage. Note that the square region can now be seen, although it is
partially obscured by noise. Panel C shows the response of the model after the opponent division
operations. Notice that noise is now substantially reduced.

A: Input Images

B: Direction-selec-
five mechanism
outputs

-m
C: Opponent response

Figure 11-3. Noise cleaning by opponent motion model.
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This noise-cleaning feature of the opponent division model has been incorporated into it
schemne for moving target indication, as is demonstrated in Fig. 11-4. Here. video ,,ecluence, taken

(a)

Figure 11-4. Moving ia.ugei enchuanccni en1 . ( a Orig inLa ( h I 1n hanced x\ ilhI opponent inotion opc rat ion.

from an in-flight helicopter scanning the groulnd have been enhanced to indicate the presence ol
vehicles movino along the ground.

The algorithmn for this enchanceenten operation is as follows:

I ) Stabilize multiple fiamles fromn the image sequience to remnove camera induced image motion.

(2) Within a region of interest on the resulting stabilized image sequence. comlpulte iMotion ener-
yv for leftward and riohiward motion (e,. andtR). These energy comLpuitations are based oil

the ouitputs of Hilbert pairs of linear. spatiolemporally oriented filters.

(3) Then, at each point in the image plane. compLite:

CI - CeR

C0 + C,' + k

where k is a small additive constant that prevents division by zero. and also serves to re-
move small amoLints of image noise. (The results are very\ insensitive to the exact choice of k,
within a large range.)

Notice in Fig.11-4 that in each case the moving vehicle that is niearly Invisible in the original
sequence (Panel a) became. in the processed sequence (Panel h). an easily visible intensity peak
that could be inlput to an aulomllatic target tracking system, or used for visual reconnaissance.
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Section MI

Hierarchical Architectures and Integration of Neural Networks and

Knowledge-Based Systems for Intelligent Robotic Control.

A. BACKGROUND

Most conventional robotic systems operate in structured environments and are quite un-
skilled by human standards, having trouble with such seemingly simple factory assembly tasks as
picking a part from a bin or threading a nut on a bolt. One important ingredient lacking in these
approaches is the system's ability to acquire sensorimotor skills through learning and practice.

One popular model of human skill acquisition [1] defines three phases of learning: (1) the
cognitive phase, wherein a beginner tries to understand the task, (2) the associative phase, in
which patterns of response emerge and gross errors are eliminated, and (3) the autonomous phase,
when task execution requires little cognitive control. Knowledge can be represented in this skill
acquisition model using declarative and reflexive forms of memory and learning [2]. Motions in-
dicative of declarative memory and learning require conscious effort, are characterized by infer-
ence, comparison, and evaluation, and provide insight into not only how something is done, but
why. Motions involving reflexive mechanisms relate specific responses to specific stimuli, are au-
tomatic, and require little or no thought.

Tasks initially learned declaratively often become reflexive through repetition. Conversely,
when familiar tasks are attempted in novel situations, reflexive knowledge often must be convert-
ed back into declarative form in order to become useful. Furthermore, shifts from declarative to
reflexive forms of control often are accompanied by a reduced dependence on sensory informa-
tion [3,4], implying the utilization of learned predictive models of one's behavior and environ-
ment. This learning and shifting of task-specific knowledge between declarative and reflexive
forms of memory plays a fundamental role in human skill acquisition, affecting computational re-
source allocation, the focusing of attention, and the ability to adapt.

In addition, humans typically rely upon visual information for motor control, but can with
practice switch to proprioceptive control of motion [5-7]. This ability is particularly useful be-
cause vision is so effective for monitoring the environment and planning motion. For example, in
sports, a novice must devote a great deal of visual attention to the control of his or her limbs and
the execution of those tasks necessary for play. This restricts the visual resources available for
monitoring the opponent or field position. On the other hand, an expert has learned, through prac-
tice, motor programs that rely for their execution predominantly upon kinesthetic input from
limbs and muscles -- leaving vision free to attend to the other aspects of the game [8].

B. OBJECTIVES

The goal of this project was to develop intelligent sensorimotor control systems that inte-
grate declarative and reflexive forms of processing and multisensory inputs within biologically in-
spired control hierarchies to enable high levels of robotic dexterity and adaptability. These
approaches are to be tested on a high-degree-of-freedom robot. The following is a summary of
the Statement of Work contained in the project proposal:
Task 1: Investigate models of the structural, functional, and behavioral aspects of human motor

control and skill acquisition for the development of hierarchical processing architectures
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for intelligent robotic control. Investigate how these biological paradigms might be used
to integrate knowledge-based systems and neural networks for robotic skill acquisition.

Task 2: Develop advanced neural network modules for use in trajectory generation, reflex gail1
modulation, and inverse kinematic and dynamic transformations.

Task 3: Investigate how the resultant control technique might be applied to complex dynamic sys-
tems, including a high-degree-of-freedom robotic limb with low-level reflexes utilizing
muscle-like pneumatic actuators. Investigate system performance associated with learn-
ing reflex gain modulations and set-point adjustments for functional motor control tasks.

C. RESULTS

1. Task 1

a. Intelligent control architecture

An architecture for intelligent sensorimotor control has been developed that emulates phases
of human motor skill acquisition by integrating knowledge-based systems and neural networks.
The robotic skill acquisition architecture depicted in Fig. HII-1 (below), is modelled after the ma-
jor structural and functional features of the human motor control system.
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Three main levels of the control hierarchy are defined: joint reflexes, motor synergies, and
task-level execution components. On the lowest level, each joint is endowed with reflexes (servo-
mechanisms) that command torque as a function of sensed joint position, velocity and torque, and
desired joint position, velocity, and acceleration. The reflexes are coordinated by motor syner-
gies, the "spinal cord" of this architecture, so as to limit the number of degrees-of-freedom that
actually need to be controlled by higher levels of the system. Task-level execution components
invoke motor synergies most appropriate to the task at hand, then set the system in motion by pro-
viding the reflex loops and acti'-e motor synergies with time varying gains and commands needed
to perform maneuvers. Motor synergy modulation and command generation are carried out by
both rule-based and neural network-based task execution components, sometimes jointly, some-
times independently, with the execution monitor supervising various phases of learning through
the manipulation of the mixer in Fig. 111-1. The execution monitor continuously evaluates neural
network task execution performance and re-engages rule-based components whenever errors due
to changes in the dynamic system or its operating environment necessitate retraining of a network.
The rule-based subsystems thereby ensure proper task completion while neural network re-learn-
ing takes place. The manner in which rules and networks interact during the various phases of
learning and supervision gives this control architecture unique adaptive capabilities.

b. Robotic skill acquisition

In an attempt to capture behavioral features of human-to-human skill transfer, along with
their implications regarding the management of attention and computation, our approach to robot-
ic skill acquisition incorporates both declarative and reflexive forms of processing. This architec-
ture utilizes transitions between declarative knowledge-based systems and reflexive neural
networks to enable system adaptation and optimization. The control scheme attempts to parallel
the training of an athlete (the robot) by a coach (the designer), whereby the robot learns through
experience how to perfect tasks initially specified in a high-level task language. Rule-based sys-
tem components encode neural network learning strategies, and skill acquisition is associated
with the shift from a predominantly feedback-oriented, rule-based representation of control to a
predominantly feedforward, network-based form.

In this case, the acquisition of skill is meant to imply a dramatic improvement in task perfor-
mance over time, as well as a significant decrease in the amount of computation required to obtain
this performance. A reduced computational burden is desired in order to mitigate the usually ad-
verse effects of scaling up a problem, such as an explosive growth in the number of rules or exe-
cution time required to handle an increasingly complex control problem. Fig. 111-2 depicts how
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Figure 111-2. Explicit and implicit functional dependencies provided by rules and neural networks within an
RSA2 controller.
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this reduction in computation, and hence execution time, is achieved here. Initially, explicit con-
trol strategies are conveniently represented by a hierarchical knowledge base. As the system op-
erates, the input/output relationships encoded by inferencing rule-based resources are smoothly
transformed into implicit neural network mappings.

Analogies to models of human motor skill acquisition are used to define transitions between
declarative and reflexive modes of operation. The various phases of robotic skill acquisition are
depicted in Fig. 111-3. During the declarative phase, knowledge-based system components dis-
cover how to achieve rough-cut task performance. Rules and conventional control algorithms
provide for plan specification, desired trajectory generation, and error-driven control commands.
During the hybrid phase, neural networks learn by knowledge-based example how to accomplish
parts of the task. Knowledge-based and neural-network-based components share control respon-
sibility, with relatively poor initial network performance giving way to robust patterns of learned
response. Finally, during the reflexive phase of skill acquisition, certain functions previously pro-
vided by inferencing rule-based resources are now provided by memory-intensive neural net-
works. If desired, associated rules are conditionally removed from the decision-making process.
When applicable, reflexive neural network-based control is optimized through reinforcement
learning.

Improvements in system performance during the transition from declarative to reflexive op-
eration are accomplished using the neural network training paradigm of feedback-error-learning

(a) Declarative Phase: plan specification, desired trajectory generation, and error-driven
control commands provided by rule-based system components.

Weks

-r

(b) Hybrid Phase: neural networks contribute to, and learn from,
rule-based control commands.

ftacs Nes..... ''l Rot"

(c) Reflexive Phase: functions previously provided by inferencing rule-based resources
now provided by memory-intensive neural networks.

Figure 111-3. Shift in representation of control law during phases of robotic skill acquisition.
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[9]. In feedback-error-learning, the total control command is the algebraic sum of two compo-
nents: (1) an error-driven feedback component that ensures reasonable, yet improvable, system
behavior, and (2) a neural network-based component that initially contributes nothing, but learns
over time to compensate for the inadequacy of the feedback component:

Control Command = Feedback Component + Network Component (1)

In an RSA2 controller, the feedback component is knowledge-based, utilizing rules and con-
ventional control algorithms to embed as much knowledge about successful control strategies as
possible (or practical). During the Hybrid Phase of skill acquisition (Fig. 111-3), the goal of neural
network training is to minimize over time this feedback component's contribution to the control
command, and thereby drive it to zero. Consequently, the feedback component's corrective ac-
tions, driven by discrepancies between desired and actual (measured or estimated) trajectories,
not only serve as part of the control law, but also serve as neural network weight update errors.
Given adequate feedback control suggestions and reasonable learning rates, the network compo-
nent will learn the inverse dynamics of the system being controlled, in the sense that it can recall
the control command required for a desired change in system output.

The learning philosophy embodied by feedback-error-learning, used here in conjunction
with knowledge-based systems and neural networks, permits analogies to be drawn to certain as-
pects of human skill acquisition. A limited amount of strategic knowledge initiates motion. Per-
formance improves incrementally through learning, with inferential problem solving giving way
to reflexive motor programs. Computational efficiency is intended for areas of the dynamic state-
space visited often, as in repetitive maneuvers. Inferential problem solving remains ready, how-
ever, to handle infrequently executed tasks, or changes in the robot or its environment that render
previously acquired expertise ineffective. The RSA2 control technique provides a way to com-
bine rules, neural networks, and feedback-error-learning to enable such adaptive behavior.

2. Task 2

a. Neural network architectures

The type of neural network architecture used in a control problem has a major impact on
system learning and performance. It is well known that many biological sensorimotor control
structures in the brain are organized using neurons that possess locally tuned overlapping recep-
tive fields. The main benefits of using local approximation techniques to represent nonlinear sys-
tem functions are faster learning, compared to the global approaches, and the ability to train the
network in one part of the input space without corrupting what has already been learned at more
distant points in the input space.

Our approach to neural network-based control utilizes network architectures suitable for on-
line learning. Our recent work has indicated that shifts in control between the rule-based and neu-
ral network components of Fig. 111-2 can be accomplished on-line using the fast learning capabil-
ities of CMAC neural networks. It was shown that the use of B-Spline receptive field functions
enables higher-order CMAC neural networks [101 to be constructed that can learn both functions
and function derivatives. This ability coupled with the computational efficiency of CMAC neural
networks allows on-line constwuction of multi-dimensional functions and their Jacobian matrices
for use in inverse kinematics and dynamics transformations and reinforcement learning.

Multi-layer perceptron neural networks [I I] are often slow to learn nonlinear functions with
complex local structure due to the global nature of their function approximations. Neural net-
works based on local approximations, such as CMACs, are capable of learning nonlinear func-
tions with localized structure quickly, but may generalize poorly and can require basis set sizes
that scale exponentially with the dimension of the input space. We have shown that CMAC neu-
ral networks with B-Spline receptive field functions can be incorporated into the node connection
functions computed in multi-layer perceptrons [12]. This allows Spline Net architectures to be
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developed that are also suitable for on-line learning by combining the generalization capabilities
and scaling properties of global multi-layer feedforward networks with the computational effi-
ciency and learning speed of local network paradigms

b. Neural network training paradigms

In our approach to intelligent robotic control, many of the system components in Fig.1I-3 are
decomposed into feedback and neural network subsystems as shown in Fig. 111-4. The output of
the feedback and neural network subsystems, u tb and unn, respectively, are summed to obtain the
total control command, u. xd is the vector of desired states, and x is the vector of actual state v
ues. As the neural network-based subsystem is trained, the feedback control law contribution, ut,
is driven to zero, and in the process, the neural network-based component learns the inverse dy-
namics of the system (in the sense that it can compute the required control command for a desired
change in the system output). When the desired state values, xd, are used as network inputs in-
stead of actual state values, x, system operation can be smoothly shifted from a predominantly
feedback form of control to a predominantly feedforward form. The neural network cowponent,unn, is trained using a quadratic cost function of u (or a differenced version [u ]k" [u ]k- ) to
minimize the feedback component's contribution to the total control command, u. The k subscript
represents the value of the control variables at time, tk. This learning paradigm is commonly re-
ferred to in the literature as Feedback-Error-Learning [10].Reinforcement learning optimization is
used to refine "rough-cut" task execution produced by constant coefficient motor synergies and
primitive (untrained) joint servo-reflexes. This is done by first training the neural networks at the
joint reflex level to represent the inverse dynamics of the system. When this phase of learning is
completed, central pattern generator (CPG) neural networks [ 13,141 residing at the motor synergy
level of the controller are trained to modulate the synergy strength coefficients as a function of
time and/or the desired system state in order to minimize the amount of energy expended or the
rate-of-change of torque applied. Minimization of the quadratic cost functions associated with
energy or rate-of-change of torque requires solving a two-point boundary value problem due to
the split boundary conditions on the state and adjoint equations. As a result, the reinforcement
learning optimization utilizes a sweep method [15] to iteratively solve for the optimal synergy
strengths. The forward sweep is accomplished as a maneuver is performed by storing a trace of
the relevant system variables in a short-term memory buffer. Once it has been determined that the
maneuver has ended, the system "thinks" about what it has just done by sweeping the adjoint sys-
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Figure !11-4. Neural network control based on feedback-error-learning.
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tern of equations backwards in time in order to make the next repetition of the maneuver closer to
optimal. Since derivatives of the neural network-based joint reflexes are required in the reinforce-
ment learning optimization, differentiable neural networks capable of local function approxima-
tion such as SplineNets [ 121 or BMACs [9] are used. The advantage of using recurrent networks
such as Jordan Nets [ 14] to implement central pattern generators is that the synergy strengths can
be modulated as either periodic or non-periodic functions of time. If feedforward networks such
as BMACs [9] or Splinets are used, then the synergy strength coefficients will be modulated in a
chained response fashion [ 13,16,17] based on the current value of the manipulator state. In either
case, the use of central pattern generator neural networks allows the optimal maneuvers learned
through practice to be generalized across space and time.

c. Learning automatic behaviors in multi-sensory robotic systems

One example of a multi-sensory integrated approach to robotic systems is presented in this
report. A more complete discussion of these systems and other examples are given in Gelfand et
al. [18]. Automatic control of a sensory-motor task is acquired through practice in an integrated
system that uses visual input to execute a task and train a control system to perform that task using
sensory inputs from joint position sensors.

A schematic diagram of a multisensory learning and control system is shown in Fig. 111-5. A

Visual
Visual Information
Planner

visual
Control 0

Execution
Monitor Workspace

Neural
Network

Based
Kinesthetic Proprioceptive

Control Information

Figure 111-5. A schematic diagram of a hybrid learning and control system. This system plans and executes the
motion of an arm using visual input and trains the arm to perform the task using feedback from position sensors
in the actuators.

simulated robot manipulator performs a task with a machine vision system initially determining
the appropriate trajectory of the manipulator based on relevant information about the work space.
This visual information is fed to the modules marked visual planner and visual control. The visu-
al control module uses the visual feedback of the position of the arm to execute movement along
the planned path. During the execution of this visually guided motion, proprioceptive sensors
provide information about the arm's state to a CMAC neural network [19]. This network is
trained to provide the proper control outputs to cause the arm to move in the same path as under
visual system control. This CMAC controller provides a direct coupling from proprioceptive in-
put to motor output for only that portion of trajectory space in which the response was learned in
performing the task. The process described above is supervised by an execution monitor responsi-
ble for monitoring the performance of the kinesthetic control system relative to the visually con-
trolled system and for switching control between them. The execution monitor also monitors the
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gross performance of the system. If problems are encountered, such as an unexpected collision,
control may be switched back to the visual system, which with its visual sensing of the whole
workspace and general algorithmic controller allows for comprehensive diagnostics and possible
retraining.

d. Learning control of an arm in the presence of an obstacle

In this demonstration, we use a visual system to locate an object in two-dimensional space
and to control the motion of the two link manipulator. As shown in Figs. IH-6a and 6b, a CMAC
was trained to control the position of the manipulator as a function of measured joint angles. Dur-
ing the training passes, the RMS difference between the visually controlled manipulator position
and the position suggested by the CMAC is monitored and used to determine when the CMAC
has adequately learned the desired trajectory. The execution monitor then switches control from
visually guided motion to kinesthetically controlled motion.

Referring to Fig. 111-5, we see a two-link manipulator constrained to a horizontal plane. The
arrangement of the manipulator, the object, and the visual system are shown. For the sake of this
demonstration we used a simple binocular visual system that locates the object in space using the
angles from the object to the sensors. The path was calculated by first determining a point of clos-
est allowable approach based on the size of the end effector. This point and the given initial and
final end effector positions were used to compute a spline function representing a desired trajecto-
ry. The visual system monitors the position of the end effector as the motion is controlled by
torques calculated by the inverse dynamics of the arm. As the arm moves, the CMAC is given as
input the current joint angles, joint velocities, and desired joint angles at the end of the segment.
The CMAC is trained to output the required torques at each joint to produce the desired end effec-
tor trajectory. The training consists of comparing the torque output of the inverse dynamic con-
troller with that of the CMAC and training the weights by the standard CMAC learning algorithm
[19]. When the error falls below a predetermined level, control is switched from visual input
based on end effector position to the CMAC.

The results of this demonstration are shown in Figs. IlI-6a am 6b. These figures depict the
behavior of the system after the indicated number of runs. Each training run consists of a com-
plete sweep of the trajectory from the initial position to the final position. In each figure, we use a
thin line to indicate the actual trajectory of the end effector as controlled by the visual input con-
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Figure lII-6a and 6b. View from above the robotic arm under visual control training a CMAC neural network to
execute the same trajectory using joint angle feedback. The graph at the bottom of each figure depicts the RMS
difference between the visual and CMAC control as discussed in the text. In (a), the arm in its seventh sweep
and control remains under the visual system. In (b), control of the arm has been transferred to the CMAC.
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troller. The heavy lines indicate the motion that would result from using the commands from the
CMAC controller. At the bottom of each figure, we show the RMS differences of the joint angles
between the CMAC-controlled and visually control trajectories plotted against the number of
training runs. In Fig. 6a, the lines from the robot's binocular visual sensors to the end effector in-
dicate that the system is under visual control. We can see that the output of the CMAC begins to
approach the desired path. The RMS difference becomes smaller and the trajectories depicted by
the thin and heavy lines become coincident. In Fig. III-6b, we show the performance of the sys-
tem after control has been transferred to the CMAC.

3. Task 3

Our hybrid rule-based/neural network control technique was initially used to integrate
knowledge-based system and neural network techniques for the control of a two-link manipulator.
A simulation was constructed in which a neural network learned how to perform a tennis-like ma-
nipulator swing. The control system utilized rule-based components to initiate the swinging ma-
neuver and train the neural network. It was shown that for the manipulative task investigated,
shifts between declarative and reflexive processing occurred smoothly, with no stability problems,
and could be traced by variations in the number of rules being tested and the network output er-
rors during learning. Additionally, real-time performance on economical hardware was indicated.

This control approach has subsequently been applied successfully (in simulation) to the con-
trol of the redundant six-link anthropomorphic robot shown in Fig.III-7 [211
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Figure 111-7. SLIM. a planar, six-link, five-joint robot that "stands" six-feet tall.

In addition to simulation, we have also begun to implement aspects of the hybrid architec-
ture to a physical version of SLIM (Skill Learning Intelligent Manipulator). Here, we describe
the hardware and its current level of functioning. It is important to recognize that the hardware
lags our simulations because of the non-ideal behavior of the structure and the actuators.

SLIM is a planar, six-link, five-joint robot that "stands" roughly six-feet tall. The robot
looks like a person in profile. It is made of light-weight aluminum I-beams that are hinged at the
joints using ball bearings. Each joint is controlled by a pair of soft pneumatic actuators known as
rubbertuators. These rubbertuators are antagonistically arranged and each can develop about 350
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lbs. of force. The rubbertuators are made by the Bridgestone Corporation of Japan. The artificial
muscles are driven by proportional control valves that serve the pressure in each muscle to a value
determined by the control software. The force in each muscle is sensed by a load cell, and the
joint angles are sensed by linear potentiometers.

Two IBM-compatible 386/33 MHz computers are used to implement the control algorithm
and display the state of the manipulator. The two computers are linked by a high bandwidth fiber-
optic data link. One computer uses a PID control based on angle to get SLIM to achieve a desired
posture as determined by program running on the other computer. The posture-determining algo-
rithm is a modified Berkinblitt approach that is a forward approximation solution to the inverse
kinematics of the link-redundant robot [22]. The algorithm is modified to improve convergence
by inclusion of low-level muscle synergies (reflexes) that allow the coordinated withdrawal or ex-
tension of the arm or leg. Without these synergies, each joint acts separately, and motions such as
limb extension or withdrawal proceed slowly. With these elements (posture controller and joint
angle PID controller), we have gotten SLIM to stand and exercise free motion by tracking his
end-point (end of arm) along a line of arbitrary inclination, or along a circle.

We have also added active joint compliance control so that any joint of the robot can be
stiffened or loosened at will. Recall that SLIM is a compliant structure, so that, in response to ex-
ternal push, he will give way to a degree determined by the joint compliance. Recently, we have
added a CMAC network to improve the tracking ability of the PID controller for one joint of the
robot. The CMAC is necessary because the rubbertuators are non-linear so that PID gains must
vary for different postures to obtain optimal and stable performance. The CMAC feed-forward
controller learns to compensate so that knee position error is reduced. In essence, the CMAC is
learning the inverse dynamics about a given joint angle and the information is used to create a bet-
ter controller. The learning method here is due to Kawato, and its trains the CMAC to drive the
feedback component to zero. We are presently generalizing this result to other joints of the robot.

To deal with computing limitations, we have also developed a new Digital Signal Processor
(DSP) architecture and have begun to implement it on SLIM. The architecture involves the use of
both shared and global memory and has a low-speed ascending and descending data bus in analo-
gy with the ascending and descending pathway in the human spinal cord.
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